NN Components
Module: Neural Network Module Logic
Classes
| Class | Description | 
|---|---|
| Module | Generic neural network module. | 
| Flatten | Flatten layer implementation. | 
| Linear | Linear layer implementation. | 
| AvgPool2d | 2D-Average pooling layer implementation. | 
| DotProductSimilarity | Dot product similarity module. | 
| ReLU | ReLU layer implementation. | 
| Conv2d | Conv2D layer implementation. | 
| Parameter | Parameter class. | 
| LinearRegression | Linear regression implementation | 
| LogisticRegression | Logistic regression implementation | 
| Prophet | Prophet forecasting implementation | 
Model Clients
| Class | Description | 
|---|---|
| ProphetClient | ModelClient for Prophet models | 
| SklearnClient | ModelClient for Scikit-learn models | 
| TorchClient | ModelClient for PyTorch models | 
| ModelClientMeta | ML model client metaclass | 
| ModelClient | ML model client | 
Class: Module
| Method | Description | 
|---|---|
| forward(x: na.NadaArray) -> na.NadaArray | Abstract method for forward pass. | 
| __call__(*args, **kwargs) -> na.NadaArray | Proxy for forward pass. | 
| __named_parameters(prefix: str) -> Iterator[Tuple[str, Parameter]] | Recursively generates all parameters in the module. | 
| named_parameters() -> Iterator[Tuple[str, Parameter]] | Generates all parameters in the module. | 
| __numel() -> Iterator[int] | Recursively generates number of elements in each parameter. | 
| numel() -> int | Returns total number of elements in the module. | 
| load_state_from_network(name: str, party: Party, nada_type: NadaInteger) -> None | Loads the model state from the Nillion network. | 
Class: Flatten
| Method | Description | 
|---|---|
| __init__(start_dim: int = 1, end_dim: int = -1) -> None | Initializes the flatten layer with start and end dimensions. | 
| forward(x: na.NadaArray) -> na.NadaArray | Forward pass. Flattens the input tensor. | 
Class: Linear
| Method | Description | 
|---|---|
| __init__(in_features: int, out_features: int, include_bias: bool = True) -> None | Initializes the linear layer with input features, output features, and an optional bias. | 
| forward(x: na.NadaArray) -> na.NadaArray | Forward pass. Applies a linear transformation to the input. | 
Class: AvgPool2d
| Method | Description | 
|---|---|
| __init__(kernel_size: ShapeLike2d, stride: Optional[ShapeLike2d] = None, padding: ShapeLike2d = 0) -> None | Initializes the 2D average pooling layer. | 
| forward(x: na.NadaArray) -> na.NadaArray | Forward pass. Applies average pooling to the input. | 
Class: DotProductSimilarity
| Method | Description | 
|---|---|
| forward(x_1: na.NadaArray, x_2: na.NadaArray) -> na.NadaArray | Forward pass. Computes the dot product similarity between two input arrays. | 
Class: ReLU
| Method | Description | 
|---|---|
| forward(x: na.NadaArray) -> na.NadaArray | Forward pass. Applies the ReLU activation function to the input. | 
| static _rational_relu(value: Union[na.Rational, na.SecretRational]) -> Union[na.Rational, na.SecretRational] | Element-wise ReLU logic for rational values. | 
| static _relu(value: NadaType) -> Union[PublicInteger, SecretInteger] | Element-wise ReLU logic for NadaType values. | 
Class: Conv2d
| Method | Description | 
|---|---|
| __init__(in_channels: int, out_channels: int, kernel_size: ShapeLike2d, padding: ShapeLike2d = 0, stride: ShapeLike2d = 1, include_bias: bool = True) -> None | Initializes the 2D convolutional layer. | 
| forward(x: na.NadaArray) -> na.NadaArray | Forward pass. Applies 2D convolution to the input. | 
Class: Parameter
| Method | Description | 
|---|---|
| __init__(shape: ShapeLike = 1) -> None | Initializes the parameter with a given shape. | 
| numel() -> int | Returns the number of elements in the parameter. | 
| load_state(state: na.NadaArray) -> None | Loads a provided NadaArray as the new parameter state. | 
Linear Models
| Class Name | Description | Methods | 
|---|---|---|
| LinearRegression | Linear regression implementation | __init__(in_features: int, include_bias: bool = True) -> Noneforward(x: na.NadaArray) -> na.NadaArray | 
| LogisticRegression | Logistic regression implementation | __init__(in_features: int, out_features: int, include_bias: bool = True) -> Noneforward(x: na.NadaArray) -> na.NadaArray | 
Time Series Models
| Class Name | Description | Methods | 
|---|---|---|
| Prophet | Prophet forecasting implementation | __init__(n_changepoints: int, growth: str = "linear", yearly_seasonality: bool = True, weekly_seasonality: bool = True, daily_seasonality: bool = False, seasonality_mode: str = "additive") -> Nonepredict(dates: np.ndarray, floor: na.NadaArray, t: na.NadaArray) -> na.NadaArraypredict_trend(floor: na.NadaArray, t: na.NadaArray) -> na.NadaArraypredict_seasonal_comps(dates: np.ndarray) -> Tuple[na.NadaArray, na.NadaArray]make_seasonality_features(dates: np.ndarray, seasonalities: Dict[str, Any]) -> Dict[str, na.NadaArray]ensure_numeric_dates(dates: np.ndarray) -> np.ndarray__call__(dates: np.ndarray, floor: na.NadaArray, t: na.NadaArray) -> na.NadaArrayforward(dates: np.ndarray, floor: na.NadaArray, t: na.NadaArray) -> na.NadaArray | 
Model Clients
| Class Name | Description | Methods | 
|---|---|---|
| ProphetClient | ModelClient for Prophet models | __init__(model: prophet.forecaster.Prophet) -> None | 
| SklearnClient | ModelClient for Scikit-learn models | __init__(model: sklearn.base.BaseEstimator) -> None | 
| TorchClient | ModelClient for PyTorch models | __init__(model: nn.Module) -> None | 
| ModelClientMeta | ML model client metaclass | __call__(cls, *args, **kwargs) -> object | 
| ModelClient | ML model client | export_state_as_secrets(name: str, nada_type: NillionType) -> Dict[str, NillionType]__ensure_numpy(array_like: Any) -> np.ndarray | 
For more examples, please visit our Github Repository Examples.